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AN ELEMENTARY THEORY OF THE CATEGORY OF SETS*

By F. WiLLiam LAWVERE
UNIVERSITY OF CHICAGO AND EIDG. TECHNISCHE HOCHSCHULE, ZURICH
Communicated by Saunders Mac Lane, October 26, 1964

We adjoin eight first-order axioms to the usual first-order theory of an abstract
Eilenberg-Mac Lane category! to obtain an elementary theory with the following
properties: (a) There is essentially only one category which satisfies these eight
axioms together with the additional (nonelementary) axiom of completeness, namely,
the category 8 of sets and mappings. Thus our theory distinguishes 8 structurally
from other complete categories, such as those of topological spaces, groups, rings,
partially ordered sets, etc. (b) The theory provides a foundation for number theory,
analysis, and much of algebra and topology even though no relation € with the
traditional properties can be defined. Thus we seem to have partially demonstrated
that even in foundations, not Substance but invariant Form is the carrier of the
relevant mathematical information.

As in the general theory of categories, our undefined terms are mapping, domain,
codomain, and composition, the first being simply a name for the elements of the
universe of discourse. Each mapping has a unique domain and a unique codomain,
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f

these being also mappings of the special sort called objects. We write A — B iff A
is the domain of f and B is the codomain of f. Given any pair f, g of mappings such
that the codomain of f is the domain of g, there is a unique mapping denoted by
fg and called the composition of f with g; the domain of fg is the domain of f and its
codomain is that of g. Composition is associative and objects behave as neutral
elements with respect to it. A mapping is an isomorphism iff it has a two-sided
inverse.

Axiom 1 (Finite Roots). There is a terminal object 1 and an initial object 0.
Dk
Every pair A1,4: of objects has a product with projections A1 X A;— A, and a sum
i

k
with injections A, — A, + A, satisfying the usual universal mapping properties.
f
Every pair A =3 B of mappings has an equalizer K — A and a coequalizer B — Q satis-
g

fying the usual universal mapping properties.

z
Definition 1: x is an element of A iff 1 = A. (We use the usual notation z € A
for this as well as for the more general notion of membership defined below, even
though these relations have few formal properties in common with the traditional
one of set theory.)
Axiom 2 (Exponentiation). For any pair A, B of objects there is an object B*

and an “evaluation” mappmg A X B* — B with the property that given any object X

and any mapping A X X — B, there is a unique X — BA such that (A X h)e = f.

Here “A X h” refers to the natural functorial extension of the product operation
from objects to mappings; such an extension exists as well for the sum and ex-
ponentiation operations. Of course, all these operations are well-defined up to a
unique natural isomorphism. It follows easily that the elements of a product are
ordered pairs, that the values of an equalizer are precisely the elements at which
the two maps agree, and that the elements of B4 are in canonical one-to-one corre-
spondence with the mappings A — B. The nature of the elements of a sum or of
a coequalizer are not so easy to discover, but will be clarified below. The usual
laws of exponents hold (up to a canonical isomorphism) and the existence of ex-
ponentiation implies that products are distributive over sums.

z 8
AxioMm 3. There is an object N together with mappings 1 = N — N such that
Zo t
gtven any object X together with mappings 1 — X — X, there is a unique mapping

N — X such that xy = 2z and zt =
z 8

Clearly there is, up to canonical isomorphism, only one such system 1 - N — N.
Mappings N — X are called sequences, and the sequence z of the axiom is said to be
defined by stmple recursion from the recursion data x,, t. Of course, for mathe-
matics we need more complicated sorts of recursions, so it is fortunate that we can
prove

THueOREM 1 (Primitive Recursion). Given mappings

fo
A—-B
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NXAXB—B

there is a mapping

f
NXA—-B
such that for any a & A, n € N one has
<0, a> f = afy

<ns, a> f = <n, a,<n, a>f>u.

The proof is a straightforward application of Axiom 2, Axiom 3, and the existence
of products from Axiom 1; the following axiom implies that the f of the theorem is
unique.

!
Axrtom 4 (1 is a generator). If mappings A =2 B are different, then there is an
9

element x © A such that zf % xg.

Axiom 5 (Axiom of Choice). If the domain of f has elements, then there is g such
that fgf = f.

The independence of the axiom of choice is easy to see in our theory, for the cate-
gory O of partially ordered sets and order preserving maps satisfies the other seven
axioms but not Axiom 5. The same example shows that the use of the axiom of
choice is essential even in the proof of such basic propositions as Proposition 2
below.

Prorosition 1. 1 + 1 s a cogenerator.

Definition 2: a is a subset of A iff a is a monomorphism with codomain A.

Definition 3 (Membership): z € a iff for some (unique) A, z is an element of
A, a is a subset of A, and there exists T such that z = za.

Definition 4 (Inclusion): a C b iff a and b are both subsets of the same set and
for some h, a = hb.

ProrosiTioN 2. If a, b are subsets of the same set, then

eChb{=VazzEa=)z Eb]

Axiom 6. If A is not an initial object, then A has elements.

AxioM 7. An element of a sum is a member of one of the injections.

Axiom 8. There exists an object with more than one element.

This completes the list of axioms. Axiom 8 is clearly independent, since Axioms
1-7 are satisfied in the category with only one mapping.

ProposiTiON 3. = & 0.

k27
" ProrosiTiON 4. 1 4 1 = 2. That s, the two injections 1 — 1 + 1 are different
and 1 + 1 has no other elements.

ProposiTioNn 5. In A + B the subsets i 4 and ig have no members in common.

THEOREM 2. All of Peano’s Postulates hold for N.

THEOREM 3 (Regular Coimage =2 Regular Image). For any mapping f, let q
denote the coequalizer of kp, with ]]cpl, where k 1s the equalizer of pof with p.f, and let
g* denote the equalizer of ick* with 11k*, where k* is the coequalizer of fi, with fi, (here
the p’s and ©’s are projections and injections)
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k Do f %0 k*
K>AXA=3A—-B=3B+ B—K*

D1 i
q [ q*
h

I*—>7T

Then the canonical h in the above diagram is anisomorphism. Hence we may assume
that I* = h = I and refer to the equation f = qq* as the factorization of f through its
image.

Definition 5: ¢ is the characteristic function of a, where a is a subset of X, iff

¢
X —2and forevery z € X, z¢ = 1, iff z € a.

Here we assume that a standard labeling of the two injections 1 — 2 will be
chosen during any discussion involving characteristic functions. Using equalizers,
it is clear that every X — 2 is the characteristic function of some subset. Con-
versely, Theorem 5 states that every subset has a characteristic function. First
we need to know that (in any model for our theory) certain infinite unions exist;
namely, a union exists for any family of subsets of a given set which has the prop-
erties that each subset in the family has a characteristic function and that there
exists a single mapping « (in the model) which parameterizes the family.

a a
TureorEM 4. To every mapping I — 2% there is a subset U « = X such that for any
z € X, one has x &€ a iff there ts j € I such that ¢ & aj, where o; is the subset of X
whose characteristic function corresponds (d la Axiom 2) to the element ja of 2%.

Remark: Given I — 2%, it is easy to construct the subset Za — X X I (whose
members are just the pairs <z, j> for which z € «;) and the subset ITa = (Za)’
consisting of all “choice functions” I — Za. If the values of « are nonempty, then
there is at least one such ‘“choice function,” which upon composing with the pro-

s
jection gives a mapping I — X such that jf € «; forallj € I.
a a’

THEOREM 5. Every subset A — X has a complement A’ — X in the sense that the
induced map A + A’ — X is an isomorphism. Hence every subset has a characteristic
Sfunction.

The idea of the proof of Theorem 5 is to define a’ as the union of all those subsets
of X which do have characteristic functions and which do not intersect a. To
complete the proof we use a lemma which states that there is at least one such subset
containing as a member any element z of X for which z& a.

The fact about coequalizers in § which is stated in the next theorem was pre-
viously shown to be characteristic of “algebraic’” categories.? For the proof we
need in our present theory lemmas guaranteeing the existence of the singleton
mapping A — 2% and of the covariant direct-image power-set functor. .

In the terminology of the previous paper? the statement of Theorem 6 is ‘‘every
precongruence is a congruence.” Before stating the theorem we give for the rel-
evant concepts definitions which are meaningful in an arbitrary category, so in par-
ticular in any model for our theory.

fo
Definition 6: A pair R = A of mappings is
N

d
reflexive iff Hd[A — R & dfo = A = df1]
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t
symmetric iff Hi[R — R & tfo = f1 & tfi = fol
ho
transitive iff VhoVhi[X h:’» R & hofi = hfo=) Hulufo = hofo & ufy = mfi]]
a relation iff VyVy'[yfo = y'fo& yfi = y’i=)y = y’]. Thus in the present theory
fo

R = A is a relation iff the induced mapping R - A X Aisasubsetof A X A.
N fo <fof1>
TuroreM 6. If R = A is a reflexive, symmetric, and transilive relation, then

h
f = <fo,f1> 1s the equalizer of pog with prg, where is q the coequalizer of fo with fi
and po,p1 are the projections.

The method of proof is to construct the partition map A — 24.

Remark: From Theorem 6 it quickly follows that the coequalizer of any pair of
maps is also the coequalizer of the RST hull of the given pair. The latter can be
constructed in a more element-wise fashion by using N.

Finally, we derive the promised completeness theorem from a more general
metatheorem about models of our theory by making use of some well-known facts

about adjoint functors.? *
T
METATHEOREM. Let C — C’ be a functor such that both C and C’ salisfy the eight

azxtoms and

(1) both C and C’ have the property that for each object A, the lattice of subobjects
of A is complete,

(2) T has an adjoint T,

(3) for each A in C, the induced mapping (1,A)c— (LT,AT)c: is surjective, where
(B,A) ¢ means the set of maps B— A in C. Then T is an equivalence of calegories, i.e.,
TT and T'T are naturally equivalent to the respective identity functors.

By setting C’ = 8, T = (1,—)c and ST = =1, we then have the

s

CoroLLARY. If C is a complete category satisfying the eight axioms, then C ds
equivalent to 8.

Here completeness has the usual meaning of category theory, namely, that in-
finite products and sums over any indexing set exist. The extent to which complete-
ness can fail is indicated by the fact that the set of all mappings between sets of
rank less than « 4 w is a model for our theory. Actually no first-order theory can
guarantee even that the operation A ) ?A exists, for it is easy to see that any

nontrivial category in which this operation exists must be nondenumerable (of
course this functor is naturally equivalent to A ~) N X A when it does exist).

It is easy to add to our theory axioms which guarantee the existence of cardinals
much larger than N, although these are almost never needed, say for analysis.
(But such axioms would at least exclude the model of the previous paragraph.)
However, it is the author’s feeling that when one wishes to go substantially beyond
what can be done in the theory presented here, a more satisfactory foundation will
involve a theory of the category of categories.

* This research was partially supported by contract no. AFOSR-520-64 and by a NATO post-
doctoral fellowship.
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THE CONSTRUCTION OF FORMAL COHOMOLOGY SHEAVES

By P. Monsky AND G. WASHNITZER*
DEPARTMENT OF MATHEMATICS, PRINCETON UNIVERSITY

Communicated by Donald C. Spencer, October 26, 196/

Introduction.—Let R be a complete discrete valuation ring of characteristic zero,
m the valuation ideal of R, k = R/m the residue field, and @ the fraction field of
R. The principal case of interest arises if R is the completion of a ring of algebraic
integers with respect to one of its prime ideals; but the equal characteristic case
or even the particular case where R is a field and m is the zero ideal is not en-
tirely without interest.

Let V be a nonsingular variety defined over k. We shall attach to V certain
sheaves H(V) of Qz-modules—the “formal cohomology sheaves” of V with respect
to the valuation ring B. These sheaves are defined for all integers I > 0 but they
are zero for I > dim V; their base space is V (with the Zariski topology). Further-
more, if V and W are nonsingular varieties defined over k and ¢: V — W is a
morphism, we shall construct a natural homomorphism of sheaves of Qz-modules

o H(W) — osH'(V),

where oxH'(V) is the sheaf of Qz-modules on W that is the direct image of H'(V)
with respect to ¢: V — W, put another way, for each open set U in W there is a
natural homomorphism from the module of sections of H'(W) over U into the
module of sections of HY(V) over ¢~!(U), and these homomorphisms commute
with restrictions. Finally, the direct sum sheaf H*(V) = @,2, H(V) has the
structure of a sheaf of graded Qgz-algebras with anticommutative multiplication;
the component of degree ! is H'(V) and ¢+ = @es’ preserves this multiplication.
Thus (V,H*(V)) is a ringed space of graded anticommutative Qg-algebras, and
(V,0y) — (V,H*(V)) is a functor from the category of nonsingular varieties
defined over k to the category of ringed spaces of graded anticommutative Q-
algebras.

1. A “special affine variety” is a variety obtained from an irreducible affine
hypersurface f(Xi,..., X,,¥) = 0 by deleting the section 0f/dY = 0. The
coordinate ring A of a special affine variety defined over k has the form k[X,,...,
X..,Y,Z])/I where I is the ideal generated by f(X,,. .., X,,Y) and Z(0f/0Y) — 1 and
f is irreducible. Such an A is called a ‘“special affine k-algebra.” The special
affine open sets on a given nonsingular variety form a neighborhood base for the
Zariski topology. For this reason it suffices to use them to construct the formal
cohomology sheaves, but for further developments of the theory (e.g., formal
cohomology of product varieties) we find it necessary to extend the class of special
affine varieties to include principal open subsets on products of special affine



